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Processing DOSY spectra using the regularized resolvent transform
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Abstract

A new method for processing diffusion ordered spectroscopy (DOSY) data is presented. This method, the regularized resolvent

transform (iRRT—the i denoting the adaptation of the method to evaluate the inverse Laplace transform), is better than conventional

processing techniques for generating 2D DOSY spectra using data that has poor chemical shift resolution. From the same data, it is

possible to use the iRRT to generate 1D subspectra corresponding to different components of the sample mixture; these subspectra

compare favorably to 1D spectra of the pure substances. Both the 2D spectra and the 1D subspectra offer a vast improvement over

results generated using a conventional processing technique (non-linear least-squares fitting). Consequently, we present the iRRT as a

stable and reliable tool for solving the inverse Laplace transform problem present in experiments such as DOSY.

� 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

The goal of diffusion ordered spectroscopy (DOSY)

[1–3] is to correlate chemical shifts with molecular dif-

fusion coefficients. By doing so, it is possible to assign

different peaks in the NMR spectrum to different com-
ponents of the sample mixture provided that the diffu-

sion coefficients of the components differ. This is useful

for analyzing complicated samples, such as biological

fluids, where assigning the NMR spectrum might

otherwise be difficult. In addition, as the diffusion co-

efficient of each peak is apparent in a DOSY spectrum,

it is possible to use the technique for monitoring pro-

cesses that affect the diffusion coefficient. For example,
such measurements can be used to observe the binding

of a drug candidate in a mixture of test compounds to a

target molecule [4,5].
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In most cases, DOSY involves the acquisition of a 2D

dataset in which the directly detected (acquisition) di-

mension contains the usual NMR free induction decay

(FID) and the indirect dimension reflects the variation

of this signal due to diffusion. Experimentally, this is

realized by acquiring a series of 1D NMR experiments
with different amounts of diffusion weighting. After

transforming the acquisition dimension, it is possible to

extract the diffusion coefficients for each peak in the

direct dimension by fitting the variation of the signal in

the indirect dimension. From this information it is then

possible to generate a DOSY spectrum, which is a 2D

plot in which one axis corresponds to the acquisition

dimension of the NMR experiment and the other axis
corresponds to the apparent diffusion coefficient.

Despite the usefulness of the DOSY technique [4–6],

its application has been curtailed by the difficulty of

extracting the diffusion coefficients from the data. This is

because molecular diffusion only results in a decay of the

NMR signal; there are no frequency components in the

diffusion dimension of the NMR experiment. Conse-

quently, if the Fourier transform were used to process
the diffusion dimension, the resulting spectrum would
reserved.
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contain in the indirect dimension peaks centered at zero
frequency that differ only in their linewidths. Although

the diffusion coefficients could be extracted by fitting the

lineshapes in the transformed diffusion dimension, it is

better to fit the decay curves directly. With the correct

choice for the values of the diffusion weighting gradi-

ents, the signal in the indirect dimension can be de-

scribed by a sum of exponential decays, so for regions of

the data where the peaks are well-resolved in the ac-
quisition dimension the analysis of the data is straight-

forward. In these regions, the diffusion coefficient for

each peak can be determined by fitting the decay in the

indirect dimension to a monoexponential function using

non-linear least-squares.

For parts of the spectrum where the peaks are not

well-resolved, the decay curve is multiexponential and,

consequently, should be analyzed using more sophisti-
cated techniques. Fitting multiexponential curves is

challenging because fundamentally it is an ill-posed

problem; for a finite dataset there are multiple solutions

all of which fit the data equally well [7]. The addition of

noise and/or a baseline offset to the decay curve only

exacerbates the problem and, as a consequence, there is

a limit to the number of components that can be re-

solved. In NMR, where the signal-to-noise ratio rarely
exceeds 103 and the values of possible diffusion coeffi-

cients range over several orders of magnitude, one

should not expect to be able to resolve more than three

diffusion coefficients in realistic situations. Even with a

few components in a decay curve, finding the ‘‘best’’

solution is still a challenging problem.

A number of techniques have been developed or im-

plemented to analyze multiexponential decay curves,
including non-linear least-squares [8], DISCRETE [1,9],

SPLMOD [2,10], DECRA [11], CORE [12], CONTIN

[2], and MaxEnt [13]. All of these techniques have their

own strengths and weaknesses and, as a consequence, no

single technique is the best for all situations. Depending

on the technique in question, weaknesses include such

things as numerical instability, broad linewidths in the

diffusion dimension, spurious artifact peaks, suscepti-
bility to falling into local minima, computational inef-

ficiency, the need to set a threshold level, and/or a

requirement for a priori knowledge about the system

(such as the number of components).

In this paper, we present a new technique for gener-

ating DOSY spectra. We believe that this technique is

more generally applicable than the previous techniques,

especially for the case of mildly overlapping resonances.
This technique, the regularized resolvent transform

adapted to solve the inverse Laplace transform (iRRT)

is based on the regularized resolvent transform (RRT)

[14] which is, in turn, an extension of the filter diago-

nalization method (FDM) [15–17]. These methods have

been used successfully to process multidimensional

NMR spectra [18–23] and have many similarities even
though the FDM was originally designed to solve the
harmonic inversion problem, while the RRT was designed

to solve the spectral estimation problem. As will be seen,

the main advantage of the FDM and the RRT is that

they are true multidimensional methods. That is, they

process the entire multidimensional dataset at once ra-

ther than processing each dimension independently of

the others. In addition, they are relatively computa-

tionally inexpensive compared to many other methods,
especially those based on non-linear optimization.

In principle both the FDM and the RRT can be used

for analyzing DOSY data. However, as the problem of

analyzing multiexponential data such as that produced

in DOSY experiments is very ill-posed, the regulariza-

tion aspect of these techniques is crucial [24,25]. In the

FDM, one has to regularize an ill-conditioned general-

ized eigenvalue problem, while in the RRT, it is neces-
sary to regularize an ill-conditioned linear system. It

turns out that regularization of the former is very tricky,

while regularization of linear systems is straightforward

and well understood. Consequently, we have based our

method for processing DOSY data on the RRT.
2. Theory

2.1. Formulation of the spectral inversion problem

Although the variation of the signal intensity in the

diffusion dimension of the DOSY experiment is Gauss-

ian in nature, it is possible to make the diffusion decay

appear exponential by incrementing the gradient in a

non-linear manner (as will be explained later in this
paper). Therefore, we can describe the NMR data gen-

erated in a DOSY experiment as a 2D array cðn;mÞ
composed of a finite number (K) of components that

oscillate along the acquisition time dimension (n) and
decay exponentially in the diffusion dimension (m):

cðn;mÞ ¼
XK
k¼1

dkunkk
m
k : ð1Þ

This model treats noise implicitly so, in practice, K will

be larger than the number of real components. The di-

mensions of the array run from n ¼ 0; . . . ;N � 1 and
m ¼ 0; . . . ;M � 1; dk are complex amplitudes that in-

clude the phase information. In this representation, the

terms

uk ¼ e�isxk and kk ¼ e�b2D0ak

contain the parameters for the acquisition dimension

and the diffusion dimension, respectively. For the di-

mensions, s is the sampling time step (i.e., dwell time)

during acquisition, and D0 is the diffusion delay time

corrected for the gradient shape as described later in this

paper. Each complex frequency, xk, contains both a real
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part corresponding to the position of a resonance in the
spectrum and an imaginary part corresponding to the

linewidth of that resonance. In the diffusion dimension,

ak corresponds to the diffusion coefficients and b is a

fitting parameter that will be described in the next sec-

tion. Except for polydisperse samples, there will only be

a few different values of ak and, for all physical cases,

these values will consist only of real numbers. However,

introducing any numerical constraints on ak can be
problematic and therefore is not done here.

The 2D parameter estimation problem described by

Eq. (1) is appealing but is not used here explicitly. In-

stead, the FDM assumption is made to derive a more

convenient working expression [18]:

cðn;mÞ ¼ UTUnKmU; ð2Þ
where U is a K � 1 column vector and U and K are

commuting K � K complex symmetric matrices, which
by definition have the properties

UK ¼ KU ; UT ¼ U ; KT ¼ K:

It can be shown by resorting to the spectral represen-

tations of U and K that Eqs. (1) and (2) are equivalent

models for the data [18].
Our objective is to generate an estimate of the 2D

spectrum as a function of two real parameters (the

proton chemical shift x and the diffusion coefficient a).
If we know dk, uk, and kk, then we can generate the

DOSY spectrum according to the spectral representa-

tion

Iðx; aÞ ¼
X
k

dk
1

1� uk=uð Þ
1

1� kk=kð Þ ; ð3Þ

where

u ¼ e�isx and k ¼ e�b2D0a:

Note that due to Eq. (1) the double sum

Iðx; aÞ ¼
X1
n¼0

X1
m¼0

cðn;mÞu�nk�m ð4Þ

is a formal Taylor expansion of Iðx; aÞ. The summation

over n is the usual discrete Fourier sum which is nu-

merically well-behaved. The summation over m, corre-
sponding to a formally divergent series, arises from the

inverse Laplace transform. Therefore, this expression

cannot be used directly, even in a truncated form.
In practice, we want to avoid having to find explicit

solutions for the parameters dk, uk, and kk. To cast the

problem of generating the spectrum into a form where

we do not have to solve for dk, uk, and kk, we can utilize

the equivalence of the forms Eqs. (1) and (2) and the

form of the spectrum (Eq. (3)) to obtain the resolvent

formula [14]

Iðx; aÞ ¼ UT 1

1� U=uð Þ
1

1� K=kð ÞU: ð5Þ
Note that, although Eq. (3) is the most natural and
simple equation for generating the spectrum, it does not

result in the most useful spectral representation as it

does not lead to double-absorption lineshapes. Instead,

we use the representation

Aðx; aÞ ¼
X
k

dk
1

1� uk=uð Þ2
1

1� kk=kð Þ2

�����
����� ð6Þ

which produces pseudo-absorption lineshapes [14]. The
only drawback of this representation is that it distorts

the peak amplitudes; that is, it scales each peak by a

factor equal to the inverse of its linewidth. As a result,

sharp peaks are overemphasized relative to broad ones.

In terms of the resolvents, Eq. (6) can be written as

Aðx; aÞ ¼ UT 1

ð1� U=uÞ2
1

ð1� K=kÞ2
U

�����
�����: ð7Þ

2.2. Local spectral analysis using a Fourier basis

Although both Eqs. (5) and (7) are in principle well-

behaved, neither can be used directly for spectral esti-

mation as the matrices U and K and the vector U are not

defined. Fortunately, the corresponding resolvent ma-

trix elements can be represented in terms of the available
data by choosing a suitable basis. The simplest choice is

given by

Un;m ¼ UnKmU;

where the dimensions run from n ¼ 0; . . . ; ~NN � 1 and

m ¼ 0; . . . ; ~MM � 1, and, assuming that both N and M are

even integers, we have defined

~NN ¼ N
2

and ~MM ¼ M
2

(rigorously speaking this basis is overdetermined if
~NN ~MM > K). Evaluated in this basis the expressions in Eqs.
(5) and (7) can be written solely in terms of the available

data cðn;mÞ. However, this would require the solution of
a linear system with ~NN � ~MM equations to generate the

spectrum. A more appropriate choice corresponds to a

small Fourier basis

Wj ¼
X~NN�1

n¼0

X~MM�1

m¼0

U
zj

� �n

KmU jð ¼ 1; . . . ;KwinÞ ð8Þ

with a set of values on the unit circle zj ¼ e�isuj . Such a

basis effectively represents only important contributions

to the resolvent ð1� U=uÞ�1 if zj � u (or uj � x), and to
the resolvent ð1� K=kÞ�1 if k is real. Note that, unlike

the conventional case of a 2D Fourier spectral analysis

where each dimension is treated on the same footing, here

the signal does not oscillate along the diffusion dimension.
Consequently, the corresponding Fourier filter is much

simpler and is designed to represent only the zero

frequency contributions. A further simplification exists
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if the set of values zj 	 e�isuj are chosen as Kwin consecu-
tive roots of unity of the ~NN th order [26]

z ~NN
j ¼ 1:

This corresponds to choosing an equidistant set of

real numbers uj ¼ 2ðj0 þ jÞp= ~NNs, where j ¼ 1; . . . ;Kwin

in some a priori specified frequency window.

The whole frequency range of interest is then split

into small overlapping windows of equal size (see, e.g.

[27]). The spectra in each window are computed and

then summed with an appropriate weighting to account

for the overlap. Note that with this construction the

rank of the original signal space K (see Eq. (1)) is not a

parameter of the method. It may seem that the method
will now depend on our choice of Kwin, which determines

the size of the local Fourier basis. However, the results

are generally insensitive to Kwin as long as it is suffi-

ciently large. In practice, we find that Kwin ¼ 30 is usu-

ally ‘‘sufficiently large’’ and, at the same time, does not

result in overly expensive computations.

2.3. iRRT: working expressions

Numerical expressions to evaluate the spectra in a

window basis described by Eq. (8) are given by (see [17]

for a derivation of the matrix elements)

Iðx; aÞ ¼ CTR�1
1 U0R

�1
2 C; ð9Þ

Aðx; aÞ ¼ CTR�1
1 U0R

�1
1 U0R

�1
2 U0R

�1
2 C

�� ��: ð10Þ

Here the elements of the column vector C are

½C�j ¼
X~NN�1

n¼0

X~MM�1

m¼0

1

zj

� �n

cðn;mÞ

and the Kwin � Kwin matrix pencils are defined as

R1 ¼ U0 �
1

u
U1 and R2 ¼ U0 �

1

k
U2:

The elements for the matrices Up (p ¼ 0; 1; 2) are

computed using

½Up�jj0 ¼
zj0xpðzjÞ � zjxpðzj0 Þ

zj0 � zj
if j 6¼ j0;

ypðzjÞ otherwise;

8<
: ð11Þ

where

xpðzÞ ¼
X~NN�1

n¼0
z�n apðnÞ

�
� ap n

�
þ ~NN

		
;

ypðzÞ ¼
XN�2

n¼0
z�napðnÞ ~NN

�
� ~NN
��� � n� 1

���	
and the three arrays apðnÞ are given by

apðnÞ ¼
XM�2

m¼0
c n



þ np;mþ mp

�
~MM

�
� ~MM
��� � m� 1

���	
with ðn0;m0Þ ¼ ð0; 0Þ, ðn1;m1Þ ¼ ð1; 0Þ, and ðn2;m2Þ ¼
ð0; 1Þ. Even though the points cðN ;mÞ are formally in-
cluded in the summation for x1ðzÞ, evaluation of the Up

matrices only requires the knowledge of cðn;mÞ for

n ¼ 0; . . . ;N � 1 ¼ 2 ~NN � 1 and m ¼ 0; . . . ;M � 1 ¼
2 ~MM � 1. The final result for U1 does not actually depend

on cðN ;mÞ as the corresponding contributions in Eq.

(11) cancel.

Note that R1 is a function of the proton frequency x
and R2 is a function of the diffusion coefficient a. Con-
sequently, R1 must be inverted at each value of x and R2

at each value of a where the spectrum Aðx; aÞ is desired.
Fortunately, when the Fourier basis is used the matrices

are small (Kwin6 50), so the computational time is not

generally a concern. Instead, the primary issue is the

regularization of R1 and R2.

Eqs. (9) and (10) are new and constitute one of the

main results of this paper. Although they look very

similar to those derived for 2D Fourier spectral esti-
mation using the RRT [14], one way in which they differ

is that, here, the argument a formally corresponds to the
imaginary frequency (k ¼ e�b2D0a is real and not on the

unit circle). Another difference is in the way the Fourier

basis is set up (Eq. (8)). To emphasize these differences

we call the present method the iRRT.

The iRRT performs 2D spectral estimation by eval-

uating a direct transformation of the original data, and
thereby avoids any need to fit the data by non-linear

least-squares. Of course, this does not mean that nu-

merical evaluation of Eqs. (9) and (10) are always

straightforward: no matter how good the method is, the

original inverse Laplace transform problem is ill-posed

and therefore the problems associated with instability of

the solution cannot be avoided. The instability of the

solution is associated with the ill-conditioned nature of
the matrices to be inverted (R1 and R2) and, despite the

very special choice of the Fourier basis in the previous

section, the matrices R1 and R2 still remain ill-condi-

tioned. However, we have discovered that it is possible

to reduce the instabilities in the iRRT spectra by using a

two-step regularization scheme.

2.4. Two-step regularization

In principle, the regularization of R1 and R2 could be

achieved using Tikhonov regularization [14,24], which is

significantly faster than, e.g., singular value decompo-

sition (SVD) [8]. The problem with Tikhonov regulari-

zation is that the whole procedure must be repeated for

each value of the regularization parameter, which is

usually unknown in advance. In the case of SVD based
regularization, the most computationally intensive part

(the SVD) needs to be applied only once, so the gener-

ation of spectra for different values of the regularization

parameter requires minimal extra work. For this reason,

we have found it advantageous to use a scheme based on

SVD. In SVD, the matrix that we wish to invert (R) is

decomposed according to:
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R ¼ VRWy;

where V andW are unitary matrices, and R ¼ diagðriÞ is
a diagonal matrix in which ri are real positive values.

After performing SVD, the inverse (R�1) can be readily

calculated. However, since the elements ri can be small
or even zero, their reciprocals may be very large leading

to unphysical results.

An effective regularization replaces the true inverse

R�1 ¼ WR�1Vy ð12Þ
by a pseudo-inverse. For example, this can be accom-

plished using

R�1
q ¼ WR�1

q Vy; ð13Þ

where

Rq ¼ diag
r2
i þ q
ri

� �

and q is a regularization parameter that is small and
positive, but generally unknown. To determine the op-

timal value of q, several spectra Aqðx; aÞ using different

values of q are generated and analyzed to identify which
value of q retains what are believed to be true peaks, but
removes most of the artifacts associated with the ill-

conditioned nature of the problem. Very often there

may be no ‘‘optimal’’ value of q. For instance, an in-

crease of q may remove the correct structure together
with the artifacts, so a compromise must be found. For

the present problem, the use of SVD (as well as Tik-

honov) regularization on its own requires too much

fiddling with q to reach a reasonable compromise. Even

more importantly, one has little control on how indi-

vidual peaks are being ‘‘regularized.’’ For instance,

some peaks may be arbitrarily narrow in the diffusion

dimension (in fact, the peak ‘‘width’’ in a is an ambig-
uous quantity) leading to spectra that are difficult to

contour and interpret.

Much better results are obtained by implementing a

two-step regularization. In the first step SVD regulari-

zation is used with a smaller value of q than is usual.

This applies a mild regularization that does not remove

the correct structures but may leave some artifacts. The

second step corresponds to a frequency-correlated reg-
ularization, via a Lorentz–Gauss convolution

Aqr x; að Þ ¼
Z

dx0da0Aq x0; a0
 �
exp

"
� x � x0

2rx

� �2

� a � a0

2ra

� �2
#
; ð14Þ

where rx and ra are adjustable smoothing parameters.

This has the effect of smoothing the spectrum and at-

tenuating the remaining artifacts. Also, as the smooth-

ing is applied after the spectrum is generated, it does not
decrease the numerical efficiency of the method. Because
we can still tolerate some artifacts left from the SVD
regularization, it is not important that the parameter q is
heavily optimized. Therefore, it is possible to set q to

some small value and thus mostly eliminate the depen-

dence of the method on the exact value of q.
Since the actual value of q must be a function of the

signal norm

kck ¼ NM
XN�1

n¼0

XM�1

m¼0
cðn;mÞj j;

it is more convenient to use the scaled parameter

~qq ¼ q
1

kck ð15Þ

which is not sensitive to either scaling the signal or

changing its size. The typical range for ~qq is between 0:1
and 0:01. Although smoothing along x may be needed,

here it was not necessary. This twofold method of reg-

ularization may seem redundant and somewhat ineffi-

cient because of the need to generate the spectrum,

Aqðx; aÞ, with a sufficiently fine grid of values in order to
evaluate accurately the integral in Eq. (14). However, we
believe this to be the best method at this time. Although

it may be possible to incorporate both regularization

steps into a single regularization, so far, we have not

found a successful implementation of such a method.
3. Experimental setup

To test the utility of the iRRT for generating DOSY

spectra, we choose a challenging sample system con-

sisting of geraniol (20 ll), camphene (30mg), and qui-

nine (27mg) in 500 ll of deuteromethanol. This sample

was chosen because, due to spectral overlap, the ali-

phatic region of the spectrum serves as a good test of

how well a method can resolve peaks based on their

diffusion coefficients. In addition, the diffusion coeffi-
cients are relatively close together, which makes sepa-

rating the peaks especially challenging. This system was

used by Barjat et al. [28] as a test sample for their 3D

DOSY-HMQC experiment; by using the iRRT, it is

possible to effectively resolve most peaks using a 2D

experiment, obviating the need to add a carbon dimen-

sion to the experiment.

A modified DSTE [29] pulse sequence was used
(Fig. 1) to ensure that sample convection would not

interfere with the results. This is important as sample

convection would, if present, add a non-exponential

component to the signal decay and result in spurious

peaks in the DOSY spectrum. In addition, a z-filter was

added immediately before signal acquisition by intro-

ducing a period with simultaneous spin-lock and gra-

dient pulses [30]. This removes small antiphase
coherences that develop for coupled spins during the

final refocusing gradient pulse.



Fig. 1. The DSTE pulse sequence used for the DOSY experiments.

From top to bottom, the lines indicate the timing of the radiofrequency

pulses (RF), the gradient pulses (G), and the coherence order (p). The
diffusion weighting gradient pulses have length d; D indicates the dif-

fusion delay. Homospoil gradients are labeled ‘‘HS’’ and the spin-lock

pulse is labeled ‘‘SL.’’ All pulses have phase x except for /1 ¼ ðx;�xÞ,
/2 ¼ ðyÞ, and /3 ¼ ðx;�xÞ.
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The DOSY experiments were performed on a
500MHz (1H) Bruker Avance DRX500 spectrometer.

For all experiments, the sample temperature was main-

tained at 300 (�0.1)K. The gradients were shaped to a

half sine-bell, so the diffusion delay corrected for the

gradient shape (D0) is

D0 ¼ D � 1

4
d;

where D is the length of time from the start of the first

diffusion-weighting gradient to the start of the second
diffusion-weighting (refocusing) gradient, and d is the

length of the gradient pulse (see Fig. 1). We define the

gradient area, g, as

g ¼ 2

p
cGd:

This quantity depends on the magnetogyric ratio c, the
physical gradient strength G, the gradient pulse length,
and includes a factor of 2=p to account for the shape of

the gradient. For our experiment, the diffusion delay

time, D, was 52ms and the gradient pulse length, d, was
2ms. The dwell time in the directly detected dimension

was 224 ls. The peak strength of the diffusion weighting

gradients were 14.23, 20.12, 24.64, 28.45, 31.81, 34.85,

37.64, and 40.24G cm�1; these values were chosen so

that the diffusion dependent decay in the indirect di-
mension appears to be exponential, as described in the

next paragraph. While 8192 points were collected in the

direct dimension, only 8 points were used in the diffusion

dimension.

As mentioned previously, the way the data is sampled

in the indirect dimension is crucial to the processing. In

order to satisfy the assumptions of the method (Eq. (1)),

the signal must behave as a sum of complex or real ex-
ponentials in all dimensions. For DOSY, the signal in

the diffusion dimension decays as

S
S0

¼ e�DD0g2 ð16Þ
which is Gaussian if g is sampled linearly. However, it is
possible to vary g non-linearly to enforce the exponen-

tial behavior that is required. In our case, g was chosen

according to g ¼ b
ffiffiffiffi
m

p
, where b is adjusted to give an

appropriate amount of diffusion weighting. This method

of sampling results in the required form for the signal.
4. Numerical results

The iRRT spectra presented here were processed us-

ing Eqs. (10), (13), and (14) with N ¼ 6000, M ¼ 8,

Kwin ¼ 30, ~qq ¼ 0:1, rx ¼ 0, and ra ¼ 1:6� 10�7. Note
that the iRRT spectrum exhibits high resolution in both

dimensions even though only 8 points are used in the

diffusion dimension. This is because the iRRT is a mul-

tidimensional method: the resolution in both dimensions
depends on the total number of data points (6000� 8).

For comparison purposes we also processed the

DOSY data using a more conventional technique. This

involves applying the Fourier transform to the acquisi-

tion dimension followed by performing an exponential fit

for each frequency point. In this case, we used the most

straightforward algorithm; the decay curves were fit to a

monoexponential decay using the Levenberg–Marqu-
ardt non-linear least-squares algorithm [8]. The starting

parameters for the non-linear fitting were determined by

initially fitting the data using linear-least-squares; this

ensured that the fit converged to a realistic minimum.

The diffusion coefficient, ax, and the standard devi-

ation, nx, that result from the fitting routine are then

used to construct the spectrum as follows:

Iðx; aÞ ¼ A0ðxÞffiffiffiffiffiffiffiffiffiffi
2pn2x

q e�ð a�axð Þ2=2n2xÞ;

where A0ðxÞ is the FT of the first increment of the DOSY

experiment. This method results in Gaussian lineshapes

in the diffusion dimension centered at the diffusion co-

efficient and with a linewidth equal to the uncertainty
returned by the fitting routine. This is the standard

method for generating DOSY spectra [1–3].

Although fitting the data to a monoexponential

function does not yield as much information as is

available from other methods, it has the advantage that

it ‘‘fails’’ in a known way and the result of such a failure

can be easily identified. The routine fails when there are

multiple components in the decay curve as the routine
only has enough parameters to model a single compo-

nent. The result of such a failure is usually a peak that

spreads diagonally across the spectrum; this effect is

often seen in the tails of peaks. More sophisticated

methods may yield ‘‘cross peaks’’ which can be mistaken

for true peaks and are much more difficult to spot.

In Fig. 2, we present the 2D DOSY spectra of the

mixture. In well-separated regions of the spectrum the



Fig. 2. Comparison of DOSY spectra constructed using non-linear least-squares fitting to a monoexponential decay and using the iRRT. The spectra

on the left show the full spectrum; those on the right show an expanded view of the aliphatic region. Both methods are effective in the regions of the

spectrum where the peaks are well-resolved in the acquisition dimension. However, in the aliphatic region of the spectrum the peaks are not well-

resolved in the acquisition dimension. In this region, the expected behavior of the monoexponential fitting routine is seen; overlapped peaks appear at

a point in the diffusion dimension that is the weighted average of the individual components of the decay. In contrast, the iRRT produces uniform

results across the entire spectral width and shows better resolution for the aliphatic region. Note that one severely overlapped peak is too weak to

show up in the iRRT spectrum at this contour level.
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monoexponential fit is adequate, but in the crowded

aliphatic region, the results reflect weighted averages of

overlapped peaks and make it difficult or impossible to

assign peaks to a particular component. In the iRRT

spectrum, however, peaks in both the aliphatic region

and the remaining parts of the spectrum are fairly well

resolved. For all parts of the iRRT spectrum and well-
resolved parts of the monoexponential fit spectrum, the

diffusion coefficients for the three components are ap-

parent: for camphene D ¼ ð12:4� 0:5Þ � 10�6 cm2 s�1,
for geraniol D ¼ ð9:1� 0:5Þ � 10�6 cm2 s�1, and for

quinine D ¼ ð6:1� 0:3Þ � 10�6 cm2 s�1.
While the 2D spectrum is useful for noting the spec-

tral separation for different species and for obtaining the

diffusion coefficients, the more useful feature of DOSY
is the ability to make structural assignments of indi-

vidual components in a mixture. This can be done by

viewing 1D cross-sections of the 2D spectrum. Since

there is some error in the diffusion coefficient of indi-

vidual peaks, these subspectra should be generated by

integrating over a small range in the diffusion dimen-

sion. This results in a more representative 1D spectrum

of the component.
Identical integration ranges have been used to obtain

subspectra of the individual components from both the

non-linear least-squares DOSY spectrum and the iRRT

DOSY spectrum. The resulting subspectra correspond-

ing to camphene, geraniol, and quinine are presented in
Fig. 3 along with spectra of the pure substance (solvated

in deuteromethanol) generated using the FT and the

RRT. For the 1D RRT results, the spectra were gener-

ated using the pseudo-absorption mode (which distorts

the amplitudes) to make them more consistent with the

1D subspectra generated from the 2D iRRT DOSY

spectrum. In all the figures, solvent peaks due to the
residual protonated solvent and HOD are labeled with

asterisks (*).

For the camphene subspectra (Fig. 3), the iRRT is

able to reproduce all but one of the resonances present

in the pure substance without introducing any incorrect

peaks. The monoexponential fit is also able to produce

most of the resonances, but in the crowded region sev-

eral of the resonances are missing. In addition, one of
the solvent peaks is not completely removed in the non-

linear least-squares subspectrum. For geraniol (Fig. 3),

both methods reproduce all of the resonances in the

pure spectrum. However, whereas the iRRT slice con-

tains very few incorrect peaks, the monoexponential fit

contains numerous artifacts from the tails of the

Gaussian quinine, camphene, and solvent peaks in the

diffusion dimension. Finally, the quinine subspectra
(Fig. 3) reveal the limitations of both methods. In the

aliphatic region, the intensity for both methods is se-

verely reduced due to the fact that the intensity is spread

across two other much stronger components (the con-

centrations of camphene and geraniol in the sample are



Fig. 3. 1D spectra and DOSY subspectra for the three components of the mixture (camphene, geraniol, and quinine). Solvent peaks are indicated

with asterisks (*). For the camphene subspectra, all but one peak is reproduced by the iRRT, and the structure in the aliphatic region is much better

preserved than in the subspectrum from the monoexponential fit. Also, note that one of the solvent peaks is still present in the spectrum from the

monoexponential fit. For geraniol, both methods effectively resolve all the peaks, but the peak structure is much more prominent in the iRRT

subspectrum. In addition, peaks from the solvent, camphene, and quinine are not completely removed in the subspectrum based on the monoex-

ponential fit. Finally, for quinine, subspectra generated using both methods suffer from reduced intensity in the aliphatic region. However, for the

subspectrum generated from the iRRT spectrum, most of the resonances are still present. Note that in the case of quinine, the subspectrum based on

the iRRT is able to reveal structure around 5 ppm that was completely obscured by solvent; this structure does not appear in the spectrum based on

using a monoexponential fit.
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higher than the concentration of quinine). This suggests

that for samples with overlapping resonances, and a

large range of concentrations, the iRRT may still be

limited in the results that it can provide. Despite this,

almost all of the resonances are reproduced by the

iRRT. In other regions of the spectrum, the iRRT re-

produces the structure exactly, while the monoexpo-
nential fit is, as would be expected, unable to reproduce

resonances that overlap with the much larger solvent

peak. This shows that the iRRT is able to reveal reso-

nances that are not even visible in the pure spectrum.

Fig. 4 illustrates how, in the aliphatic region of the

spectrum, both methods suffer limitations. In the case of

geraniol, both methods produce the correct structure,

but the monoexponential fit contains numerous peaks
that are not present in the pure spectrum; as mentioned

before, these peaks in the diffusion dimension arise from

the tails of the Gaussian peak shapes of other compo-

nents. It should also be noted that both methyl peaks at

1.7 ppm are present in the iRRT spectrum, but are so

intense that they are not seen using this scale; this dis-
tortion of the intensities is the disadvantage of using the

pseudo-absorption representation. This effect is also

seen in the case of camphene, where the iRRT does a

much better job of reproducing the fine structure in the

1D spectrum, but the intensity of the peak at 1.9 ppm is

reduced to such an extent that it is not easily seen with

the present scaling.
5. Conclusions

In this paper we showed how the RRT could be

adapted to solve a 2D spectral estimation problem

corresponding to a Fourier transformation in the ac-

quisition dimension and an inverse Laplace transfor-
mation in the indirect dimension. Due to the severely

ill-conditioned nature of the problem, a twofold regu-

larization scheme was adopted to obtain the best results.

The two steps of the regularization process involved first

adjusting the regularization parameter q used in the

SVD step, followed by a Lorentz–Gauss convolution to



Fig. 4. Expanded aliphatic region of 1D slices for geraniol (left) and

camphene (right). For comparison, the FT spectra of the pure com-

pounds are also shown. It can be seen that the spectra generated using

the iRRT and monoexponential fitting both suffer from problems in

this region. The important point is that, although some of the ampli-

tudes are distorted in the iRRT spectra (as is expected), these spectra,

unlike those based on monoexponential fitting, do not contain peaks

that are not present in the pure compound.
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smooth any remaining artifacts. By applying this

method to DOSY, significant improvements can be

obtained over monoexponential non-linear least-squares

fitting. We were relatively successful in being able to

reproduce 1D subspectra corresponding to the pure

substances from the 2D iRRT DOSY spectrum of a
mixture of a few components. Due to the nature of the

iRRT, it is well suited for samples which have a few

discrete components that overlap in the chemical shift

dimension(s) but is not generally applicable to samples

with a large number of overlapping components such as

polydisperse samples.

Although the iRRT produces reasonable (and often

better) results compared to other methods for processing
DOSY spectra, it is still constrained by the limitations of

trying to resolve multiple diffusion coefficients from a

noisy multiexponential decay curve. This is a problem

that is fundamental to 2D DOSY spectroscopy and will

not be improved by using other data processing tech-

niques. The way to get around this problem is to add

another dimension to the experiment. Although adding
dimensions using conventional processing techniques
requires large increases in the experiment time, methods

based on the FDM/RRT only require modest increases

in the experiment time as only a few increments are re-

quired in the additional indirect dimensions. In our

forthcoming papers, we will show how the present

technique can be generalized to such higher dimensional

DOSY experiments.
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